Q1. Here is a right-angled triangle.

Diagram NOT accurately drawn
Calculate the size of the angle marked x.
Give your answer correct to 1 decimal place.
$x=$ \qquad . ${ }^{\circ}$

Q3.

$P Q R$ is a right-angled triangle.
$Q R=4 \mathrm{~cm}$
$P R=10 \mathrm{~cm}$
Work out the size of angle $R P Q$.
Give your answer correct to 3 significant figures.
\qquad
.

Q4. Here is a right-angled triangle.

Diagram NOT accurately drawn
(a) Calculate the size of the angle marked x.

Give your answer correct to 1 decimal place.
\qquad
$x=$.

Here is another right-angled triangle.

Diagram NOT accurately drawn
(b) Calculate the value of y.

Give your answer correct to 1 decimal place.

$$
y=.
$$

\qquad

Q5.

The diagram represents a vertical pole $A C D$.
$A B$ is horizontal ground.
$B C$ is a wire of length 8.5 metres.

The height of the pole $A D$ is 9 metres.
For the pole to be correctly installed, the length $D C$ has to be at least 1 metre.
Show that the pole has been correctly installed.

M1.

Working	Answer	Mark	Additional Guidance
$\cos x=\frac{5}{8}$	51.3-51.35	3	M1 for $\cos (x=)^{\frac{5}{8}}$ M1 for $\cos ^{-1} \overline{8}$ or cos- 0.625 , or $\cos ^{-1}(5 \div 8)$ A1 for 51.3-51.35 (SC B2 for $0.89-0.9$ or $57-57.1$ seen) Alternative Scheme $h^{2}=8^{2}-5^{2}(=39)$ M1 for $\sin (x=)^{\frac{\sqrt{139^{1 "}}}{8}}$ or $\tan (x=)^{\frac{\sqrt{1 " 39^{1}}}{5}}$ or $\frac{\sin x}{\sqrt{439^{\prime \prime}}}=\frac{\sin 90}{8}$ oe or $\left(\sqrt{{ }^{\prime 39 "}}\right)^{2}=8^{2}+5^{2}-2 \times 8 \times 5 \times \cos x$ M1 for $\sin ^{-1}\left(\frac{\sqrt{" 39 "}}{8}\right)$ or $\sin -1\left(\frac{\sqrt{1 " 39 " 1} \times \sin 90}{8}\right)$ or $\tan ^{-1}\left(\frac{\sqrt{" 39^{11}}}{5}\right) \operatorname{or} \cos ^{-1}\left(\frac{8^{2}+5^{2}-\left(\sqrt{" 39^{11}}\right)^{2}}{2 \times 8 \times 5}\right)$ A1 for 51.3-51.35

M3.

Working	Answer	Mark	Additional Guidance

M4.

	Working	Answer	Mark	Additional Guidance
(a)	$\cos x=\frac{5}{8}$	51.3-51.35	3	M1 for $\cos (x=)^{\frac{5}{8}}$ M1 for $\cos ^{-1} \frac{5}{8}$ or $\cos ^{-1} 0.625$, or $\cos ^{-1}(5 \div 8)$ A1 for 51.3-51.35 (SC B2 for $0.89-0.9$ or $57-57.1$ seen) Alternative Scheme $h^{2}=8^{2}-5^{2}(=39)$ M1 for $\sin (x=)^{\frac{\sqrt{" 39 "}}{8}}$ or $\tan (x=)^{\frac{\sqrt{439 "}}{5}}$ or

Page 8

				A1 for $51.3-51.35$
(b)	$\begin{aligned} & \tan 40=\frac{y}{12.5} \\ & y=12.5 \times \tan 40 \end{aligned}$	10.4-10.5		M1 for $\tan 40=\frac{y}{12.5}$ M1 for $12.5 \times \tan 40$ A1 for 10.4-10.5 SC: B2 for $\pm(13.9-14.0)$ or $9-9.1$ seen Alternative scheme M1 for $\frac{y}{\sin 40}=\frac{12.5}{\sin 50}$ oe M1 for $y=\frac{12.5}{\sin 50} \times \sin 40$ A1 for 10.4 - 10.5 SC: B2 for $\pm(35.4-35.5)$ or $10.39-10.396$ seen

M5.

	Working	Answer	Mark	Additional Guidance

E1. This was a standard right-a angled trigonometry question involving cos. Not all candidates could access the question with a lot of confusion over rules and misuse of the correct function - for example, $\cos 5 \div 8$, which would have given an error on the calculator, or cos 0.625 , which gives a plausible answer albeit close to 90°.

E3. Nearly 65% of candidates were unable to gain any marks. Some candidates found hypotenuse but got no further. Those who realised they should use TAN often could not use inv tan correctly and tan 0.4 was seen. There were a few cases of radians or grads being used. Just under 30% of candidates scored full marks.

E4. In part (a) many candidates struggled with this question or adopted a long-winded approach involving Pythagoras and the sine rule.

Common errors included failing to identify cos as the appropriate ratio or using an incorrect order of operations when finding invcos. The sine rule candidates often failed to rearrange correctly, some of them failed to put sine at all and others calculated the third side using Pythagoras incorrectly.

In part (b) most candidates recognised the need to use the tan ratio but faltered when it became necessary to manipulate the formula to make y the subject. A common error was to write $\tan 40=y / 12.5$ and then rearrange incorrectly confusing the angle and side length given to calculate $40 \times \tan 12.5$. Others attempted $\tan 40 \div 12.5$ or $12.5 \div \tan 40$. Some candidates identified the third angle as 50 and then successfully used the sine rule.

